Equipopularity Classes of 132-Avoiding Permutations

نویسندگان

  • Lynn Chua
  • Krishanu Roy Sankar
چکیده

The popularity of a pattern p in a set of permutations is the sum of the number of copies of p in each permutation of the set. We study pattern popularity in the set of 132-avoiding permutations. Two patterns are equipopular if, for all n, they have the same popularity in the set of length-n 132-avoiding permutations. There is a well-known bijection between 132-avoiding permutations and binary plane trees. The spines of a binary plane tree are defined as the connected components when all edges connecting left children to their parents are deleted, and the spine structure is the sorted sequence of lengths of the spines. Rudolph shows that patterns of the same length are equipopular if their associated binary plane trees have the same spine structure. We prove the converse of this result using the method of generating functions, which gives a complete classification of 132-avoiding permutations into equipopularity classes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern Popularity in 132-Avoiding Permutations

The popularity of a pattern p is the total number of copies of p within all permutations of a set. We address popularity in the set of 132-avoidng permutations. Bóna showed that in this set, all other non-monotone length-3 patterns are equipopular, and proved equipopularity relations between some length-k patterns of a specific form. We prove equipopularity relations between general length-k pa...

متن کامل

Equipopularity Classes in the Separable Permutations

When two patterns occur equally often in a set of permutations, we say that these patterns are equipopular. Using both structural and analytic tools, we classify the equipopular patterns in the set of separable permutations. In particular, we show that the number of equipopularity classes for length n patterns in the separable permutations is equal to the number of partitions of the integer n− 1.

متن کامل

Alternating, Pattern-Avoiding Permutations

We study the problem of counting alternating permutations avoiding collections of permutation patterns including 132. We construct a bijection between the set Sn(132) of 132-avoiding permutations and the set A2n+1(132) of alternating, 132avoiding permutations. For every set p1, . . . , pk of patterns and certain related patterns q1, . . . , qk, our bijection restricts to a bijection between Sn(...

متن کامل

Horse paths, restricted 132-avoiding permutations, continued fractions, and Chebyshev polynomials

Several authors have examined connections among 132-avoiding permutations, continued fractions, and Chebyshev polynomials of the second kind. In this paper we find analogues for some of these results for permutations π avoiding 132 and 1223 (there is no occurrence πi < πj < πj+1 such that 1 ≤ i ≤ j − 2) and provide a combinatorial interpretation for such permutations in terms of lattice paths. ...

متن کامل

Simple permutations: Decidability and unavoidable substructures

Simple permutations are the building blocks of permutation classes. As such, classes with only finitely many simple permutations, e.g., the class of 132-avoiding permutations, have nice properties. To name three: these classes have algebraic generating functions (as established by Albert and Atkinson [1]; see Brignall, Huczynska, and Vatter [9] for extensions), are partially well-ordered (see t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014